
How to Dockerize
a Flask Python
application

Setting up a machine manually to deploy your Python

Flask Application multiple times can easily lead to human

errors and also increases the chances of missing certain

dependencies. It takes plenty of time to figure out the

errors, fix them, and then deploy the applications.

Deploy your Flask python application using

Docker in Production.

 First and foremost, never build your

Docker Images on the Production servers. You

must always pull your images from the central

Docker Registry/Repository.

01

 Always verify the source of base images

that you use in your Dockerfiles.

02

 Clean up containers that are no longer

running using the “docker rm” command.

03

 Use volumes to store your application

logs on persistent volumes.

04

 Public traffic should not have access to

certain containers that are private.

05

 Use the “docker logs” command to

fetch logs from your containers.

06

 Make use of the “docker inspect”

command to get detailed information about

Docker Objects.

07

 Use “docker secret” to manage credentials

or secrets, avoid storing secrets in Plain Text

format.

08

 Limit resources for containers, enforce

resource limits so that containers use no more

than a given limit.

09

 Enable logging and monitoring for your

containerized applications.

10

 Use the “restart: always” policy to avoid

downtime.

11

 And very important to note, use a

Container Orchestration Tool.

12

Check out this link for more updates

 https://www.clickittech.com/devops/dockerize-flask-python-application/

